
14 IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. RA-2, NO. I , MARCH 1986

A Robust Layered Control Syste
For A Mobile Robot

Abstract--A new architecture for controlling mobile robots is de-
scribed. Layers of control system are built to let the robot operate at
increasing levels of competence. Layers are made up of asynchronous
modules that communicate over low-bandwidth channels. Each module is
an instance of a fairly simple computational machine. Higher-level layers
can subsume the roles of lower levels by suppressing their outputs.
However, lower levels continue to function as higher levels are added.
The result is a robust and flexible robot control system. The system has
been used to control a mobile robot wandering around unconstrained
laboratory areas and computer machine rooms. Eventually it i s intended
to control a robot that wanders the office areas of our laboratory,
building maps of its surroundings using an onboard arm to perform
simple tasks.

I. INTRODUCTION

A CONTROL SYSTEM for a completely autonomous
mobile robot must perform many complex information

processing tasks in real time. It operates in an environment
where the boundary conditions (viewing the instantaneous
control problem in a classical control theory formulation) are
changing rapidly. In fact the determination of those boundary
conditions is done over very noisy channels since there is no
straightforward mapping between sensors (e.g. TV cameras)
and the form required of the boundary conditions.

The usual approach to building control systems for such
robots is to decompose the problem into a series (roughly) of
functional units as illustrated by a series of vertical slices in
Fig. 1. After analyzing the computational requirements for a
mobile robot we have decided to use task-achieving behav-
iors as our primary decomposition of the problem. This is
illustrated by a series of horizontal slices in Fig. 2. As with a
functional decomposition, we implement each slice explicitly
then tie them all together to form a robot control system. Our
new decomposition leads to a radically different architecture
for mobile robot control systems, with radically different
implementation strategies plausible at the hardware level, and
with a large number of advantages concerning robustness,
buildability and testability.

Manuscript revised February 3, 1986. This work was supported in part by
an IBM Faculty Development Award, in part by a grant from the Systems
Development Foundation, in part by an equipment grant from Motorola, and
in part by the Advanced Research Projects Agency under Office of Naval
Research contracts N00014-80-C-0505 and N00014-82-K-0334.

The author is with the Artificial Intelligence Laboratory, Massachusetts
Institute of Technology, 545 Technology Square, Cambridge, MA 02139,
USA.

IEEE Log Number 8608069.

Fig. 1. Traditional decomposition of a mobile robot control system into
functional modules.

reason about behavior of objects

plan changes to the world

identify objects

monitor changes
Sensors __+ ---b Actuators

build maps

explore

wander

avoid objects

Fig. 2. Decomposition of a mobile robot control system based on task-
achieving behaviors.

A . Requirements

We can identify a number of requirements of a control
system for an intelligent autonomous mobile robot. They each
put constraints on possible control systems that we may
employ. They are identified as follows.

Multiple Goals: Often the robot will have multiple goals,
some conflicting, which it is trying to achieve. It may be trying
to reach a certain point ahead of it while avoiding local
obstacles. It may be trying to reach a certain place in minimal
time while conserving power reserves. Often the relative
importance of goals will be context-dependent. Getting off the
railroad tracks when a train is heard becomes much more
important than inspecting the last ten track ties of the current
track section. The control system must be responsive to high
priority goals, while still servicing necessary “low-level’’
goals (e.g., in getting off the railroad tracks, it is still
important that the robot maintains its balance so it doesn’t fall
down).

Multiple Sensors: The robot will most likely have multiple
sensors (e.g., TV cameras, encoders on steering and drive
mechanisms, infrared beacon detectors, an inertial navigation

08824967/86/0300-0014$01 .OO O 1986 IEEE

Authorized licensed use limited to: Riccardo Cassinis. Downloaded on June 3, 2009 at 07:42 from IEEE Xplore. Restrictions apply.

IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. RA-2, NO. 1, MARCH 1986 15

system, acoustic rangefinders, infrared rangefinders, access to
a global positioning satellite system, etc.). All sensors have an
error component in their readings. Furthermore, often there is
no direct analytic mapping from sensor values to desired
physical quantities. Some of the sensors will overlap in the
physical quantities they measure. They will often give
inconsistent readings-sometimes due to normal sensor error
and sometimes due to the measurement conditions being such
that the sensor (and subsequent processing) is used outside its
domain of applicability. Often there will be no analytic
characterization of the domain of applicability (e.g. under
what precise conditions does the Sobel operator return valid
edges?). The robot must make decisions under these condi-
tions.

Robustness: The robot ought to be robust. When some
sensors fail it should be able to adapt and cope by relying on
those still functional. When the environment changes drasti-
cally it should be able to still achieve some modicum of
sensible behavior, rather then sit in shock or wander aimlessly
and irrationally around. Ideally it should also continue to
function well when there are faults in parts of its processor(s).

Extensibility: As more sensors and capabilities are added to
a robot it needs more processing power; otherwise, the
original capabilities of the robot will be impaired relative to
the flow of time.

B. Other Approaches

Multiple Goals: Elfes and Talukdar [4] designed a control
language for Moravec’s robot [111, which tried to accommo-
date multiple goals. It mainly achieved this by letting the user
explicitly code for parallelism and to code an exception path to
a special handler for each plausible case of unexpected
conditions.

Multiple Sensors: Flynn [5] explicitly investigated the use
of multiple sensors, with complementary characteristics (sonar
is wide angle but reasonably accurate in depth, while infrared
is very accurate in angular resolution but terrible in depth
measurement). Her system has the virtue that if one sensor
fails the other still delivers readings that are useful to the
higher level processing. Giralt et al. [6] use a laser range
finder for map making, sonar sensors for local obstacle
detection, and infrared beacons for map calibration. The robot
operates in a mode in which one particular sensor type is used
at a time and the others are completely ignored, even though
they may be functional. In the natural world multiple
redundant sensors are abundant. For instance [lo] reports that
pigeons have more than four independent orientation sensing
systems (e.g., sun position compared to internal biological
clock). It is interesting that the sensors do not seem to be
combined but rather, depending on the environmental condi-
tions and operational level of sensor subsystems, the data from
one sensor tends to dominate.

Robustness: The above work tries to make systems robust
in terms of sensor availability, but little has been done with
making either the behavior or the processor of a robot robust.

Extensibility: There are three ways this can be achieved

without completely rebuilding the physical control system. 1)
Excess processor power that was previously being wasted can
be utilized. Clearly this is a bounded resource. 2) The
processor(s) can be upgraded to an architecturally compatible
but faster system. The original software can continue to run,
but now excess capacity will be available and we can proceed
as in the first case. 3) More processors can be added to carry
the new load. Typically systems builders then get enmeshed in
details of how to make all memory uniformly accessible to all
processors. Usually the cost of the memory to processor
routing system soon comes to dominate the cost (the measure
of cost is not important-it can be monetary, silicon area,
access time delays, or something else) of the system. As a
result there is usually a fairly small upper bound (on the order
of hundreds for traditional style processing units; on the order
to tens to hundreds of thousands for extremely simple
processors) on the number of processors which can be added.

C. Starting Assumptions ,

Our design decisions for our mobile robot are based on the
following nine dogmatic principles (six of these principles
were presented more fully in [2]).

1) Complex (and useful) behavior need not necessarily be a
product of an extremely complex control system. Rather,
complex behavior may simply be the reflection of a complex
environment [13]. It may be an observer who ascribes
complexity to an organism-not necessarily its designer.

2) Things should be simple. This has two applications. a)
When building a system of many parts one must pay attention
to the interfaces. If you notice that a particular interface is
starting to rival in complexity the components it connects, then
either the interface needs to be rethought or the decomposition
of the system needs redoing. b) If a particular component or
collection of components solves an unstable or ill-conditioned
problem, or, more radically, if its design involved the solution
of an unstable or ill-conditioned problem, then it is probably
not a good solution from the standpoint of robustness of the
system.

3) We want to build cheap robots that can wander around
human-inhabited space with no human intervention, advice, or
control and at the same time do useful work. Map making is
therefore of crucial importance even when idealized blue-
prints of an environment are available.

4) The human world is three-dimensional; it is not just a
two-dimensional surface map. The robot must model the
world as three-dimensional if it is to be allowed to continue
cohabitation with humans.

5) Absolute coordinate systems for a robot are the source of
large cumulative errors. Relational maps are more useful to a
mobile robot. This alters the design space for perception
systems.

6) The worlds where mobile robots will do useful work- are
not constructed of exact simple polyhedra. While polyhedra
may be useful models of a realistic world, it is a mistake to
build a special world such that the models can be exact. For

Authorized licensed use limited to: Riccardo Cassinis. Downloaded on June 3, 2009 at 07:42 from IEEE Xplore. Restrictions apply.

16 IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. RA-2, NO. I , MARCH 1986

this reason we will build no artificial environment for our
robot.

7) Sonar data, while easy to collect, does not by itself lead to
rich descriptions of the world useful for truly intelligent
interactions. Visual data is much better for that purpose. Sonar
data may be useful for low-level interactions such as real-time
obstacle avoidance.

8) For robustness sake the robot must be able to perform
when one or more of its sensors fails or starts giving erroneous
readings. Recovery should be quick. This implies that built-in
self calibration must be occurring at all times. If it is good
enough to achieve our goals then it will necessarily be good
enough to eliminate the need for external calibration steps. To
force the issue we do not incorporate any explicit calibration
steps for our robot. Rather we try to make all processing steps
self calibrating.

9) We are interested in building artificial beings-robots
that can survive for days, weeks and months, without human
assistance, in a dynamic complex environment. Such robots
must be self-sustaining.

11. LEVELS AND LAYERS

There are many possible approaches to building an autono-
mous intelligent mobile robot. As with most engineering
problems, they all start by decomposing the problem into
pieces, solving the subproblems for each piece, and then
composing the solutions. We think we have done the first of
these three steps differently to other groups. The second and
third steps also differ as a consequence.

A . Levels of Competence

Typically, mobile robot builders (e.g., [3] , [6], [SI, [l I],
[12], [14], [Tsuji 841, [Crowley 851) have sliced the problem
into some subset of

* sensing
* mapping sensor data into a world representation
* planning

task execution
* motor control.

This decomposition can be regarded as a horizontal decom-
position of the problem into vertical slices. The slices form a
chain through which information flows from the robot’s
environment, via sensing, through the robot and back to the
environment, via action, closing the feedback loop (of course
most implementations of the above subproblems include
internal feedback loops also). An instance of each piece must
be built in order to run the robot at all. Later changes to a
particular piece (to improve it or extend its functionality) must
either be done in such a way that the interfaces to adjacent
pieces do not change, or the effects of the change must be
propagated to neighboring pieces, changing their functional-
ity, too.

We have chosen instead to decompose the problem verti-
cally as our primary way of slicing up the problem. Rather
than slice the problem on the basis of internal workings of the

solution, we slice the problem on the basis of desired external
manifestations of the robot control system.

To this end we have defined a number of levels of
competence for an autonomous mobile robot. A level of
competence is an informal specification of a desired class of
behaviors for a robot over all environments it will encounter.
A higher level of competence implies a more specific desired
class of behaviors.

We have used the following levels of competence (an earlier
version of these was reported in [l]) as a guide in our work.

0) Avoid contact with objects (whether the objects move or

1) Wander aimlessly around without hitting things.
2) “Explore” the world by seeing places in the distance

3) Build a map of the environment and plan routes from one

4) Notice changes in the “static” environment.
5) Reason about the world in terms of identifiable objects

and perform tasks related to certain objects.
6) Formulate and execute plans that involve changing the

state of the world in some desirable way.
7) Reason about the behavior of objects in the world and

modify plans accordingly.

are stationary).

that look reachable and heading for them.

place to another.

Notice that each level of competence includes as a subset each
earlier level of competence. Since a level of competence
defines a class of valid behaviors it can be seen that higher
levels of competence provide additional constraints on that
class.

B. Layers of Control

The key idea of levels of competence is that we can build
layers of a control system corresponding to each level of
competence and simply add a new layer to an existing set to
move to the next higher level of overall competence.

We start by building a complete robot control system that
achieves level 0 competence. It is debugged thoroughly. We
never alter that system. We call it the zeroth-level control
system. Next we build a another control layer, which we call
the first-level control system. It is able to examine data from
the level 0 system and is also permitted to inject data into the
internal interfaces of level 0 suppressing the normal data flow.
This layer, with the aid of the zeroth, achieves level 1
competence. The zeroth layer continues to run unaware of the
layer above it which sometimes interferes with its data paths.

The same process is repeated to achieve higher levels of
competence (Fig. 3). We call this architecture a subsumption
architecture.

In such a scheme we have a working control system for the
robot very early in the piece-as soon as we have built the first
layer. Additional layers can be added later, and the initial
working system need never be changed.

We claim that this architecture naturally lends itself to
solving the problems for mobile robots delineated in Section I-
A.

Authorized licensed use limited to: Riccardo Cassinis. Downloaded on June 3, 2009 at 07:42 from IEEE Xplore. Restrictions apply.

BROOKS: A ROBUST LAYERED CONTROL SYSTEM FOR A MOBILE ROBOT

I 1
I , , I

1
Sensors level 0 t Actuators

Fig. 3. Control is layered with higher level layers subsuming the roles of
lower level layers when they wish to take control. The system can be
partitioned at any level, and the layers below form a complete operational
control system.

Multiple Goals: Individual layers can be working on
individual goals concurrently. The suppression mechanism
then mediates the actions that are taken. The advantage here is
that there is no need to make an early decision on which goal
should be pursued. The results of pursuing all of them to some
level of conclusion can be used for the ultimate decision.

Multiple Sensors: In part we can ignore the sensor fusion
problem as stated earlier using a subsumption architecture.
Not all sensors need to feed into a central representation.
Indeed, certain readings of all sensors need not feed into
central representations-only those which perception process-
ing identifies as extremely reliable might be eligible to enter
such a central representation. At the same time however the
sensor values may still be being used by the robot. Other
layers may be processing them in some fashion and using the
results to achieve their own goals, independent of how other
layers may be scrutinizing them.

Robustness: Multiple sensors clearly add to the robustness
of a system when their results can be used intelligently. There
is another source of robustness in a subsumption architecture.
Lower levels that have been well debugged continue to run
when higher levels are added. Since a higher level can only
suppress the outputs of lower levels by actively interfering
with replacement data, in the cases that it can not produce
results in a timely fashion the lower levels will still produce
sensible results-albeit at a lower level of competence.

Extensibility: An obvious way to handle extensibility is to
make each new layer run on its own processor. We will see
below that this is practical as there are in general fairly low
bandwidth requirements on communication channels between
layers. In addition we will see that the individual layers can
easily be spread over many loosely coupled processors.

C. Structure of Layers
But what about building each individual layer? Don’t we

need to decompose a single layer in the traditional manner?
This is true to some extent, but the key difference is that we
don’t need to account for all desired perceptions and process-
ing and generated behaviors in a single decomposition. We are
free to use different decompositions for different sensor-set
task-set pairs.

We have chosen to build layers from a set of small
processors that send messages to each other. Each processor is
a finite state machine with the ability to hold some data

17

structures. Processors send messages over connecting
“wires.” There is no handshaking or acknowledgement of
messages. The processors run completely asynchronously,
monitoring their input wires, and sending -messages on their
output wires. It is possible for messages to get lost-it actually
happens quite often. There is no other form of communication
between processors, in particular there is no shared global
memory.

All processors (which we refer to as modules) are created
equal in the sense that within a layer there is no central control.
Each module merely does its thing as best it can.

Inputs to modules can be suppressed and outputs can be
inhibited by wires terminating from other modules. This is the
mechanism by which higher level layers subsume the role of
lower levels.

111. A ROBOT CONTROL SYSTEM SPECIFICATION LANGUAGE

There are two aspects to the components of our layered
control architecture. One is the internal structure of the
modules, and the second is the way in which they communi-
cate. In this section we flesh out the details of the semantics of
our modules and explain a description language for them.

A . Finite State Machines

Each module is a finite state machine, augmented with some
instance variables, which can actually hold Lisp data struc-
tures.

Each module has a number of input lines and a number of
output lines. Input lines have single-element buffers. The most
recently arrived message is always available for inspection.
Messages can be lost if a new one arrives on an input line
before the last was inspected. There is a distinguished input to
each module called reset. Each state is named. When the
system first starts up all modules start in the distinguished state
named NIL. When a signal is received on the reset line the
module switches to state NIL. A state can be specified as one of
four types.

output

Side effect

Conditional
dispatch

An output message, computed as a function
of the module’s input buffers and instance
variables, is sent to an output line. A new
specified state is then entered.

One of the module’s instance variables is set
to a new value computed as a function of its
input buffers and variables. A new specified
state is then entered.

A predicate on the module’s instance varia-
bles and input buffers is computed and
depending on the outcome one of two
subsequent states is entered.

Authorized licensed use limited to: Riccardo Cassinis. Downloaded on June 3, 2009 at 07:42 from IEEE Xplore. Restrictions apply.

18 SEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. RA-2, NO. I , MARCH 1986

Event
dispatch A sequence of pairs of conditions and states

to branch to are monitored until one of the
events is true. The events are in combina-
tions of arrivals of messages on input lines
and the expiration of time delays.

An example of a module defined in our specification
language is the Avoid module in Listing 1.
Listing I , Avoid module in Lisp.

~~~ ~~~~ ~~~~~~ ~ ~~~~ ~ ~ ~ ~~ ~ ~ ~ ~~~~ ~ ~ ~~ ~ . ~ ~~~~~~~~ 

(defnlodule  avoid 1 
:inputs  (force  heading) 
:outputs  (command) 
:instance-vars  (resultforce) 
:states 

((nil  (event-dispatch  (and  fbrcc  heading)  plan)) 
(plan  (setf  resultforce  (select-direction  force  heading)) 

(go  (conditional-dispatch  (significant-force-p  resultforce 1.0) 
go) 

start 
nil)) 

(start  (output  command  (follow-force  resultforce)) 
nil))) 

~~ ~ ~~ ~ ~~~ ~~~ ~~ ~~ ~~~~ ~~~~~~~ ~ ~~ ~~~~ ~~~ ~~ ~ ~~ 

Here, select-direction,  significant-force-p,  and  follow-force 
are all Lisp functions, while  setf is the  modern Lisp assign- 
ment  special form. 

The force input line inputs  a force with  magnitude  and 
direction  found by treating  each  point  found by the sonars as 
the site of a  repulsive force decaying as the square of distance. 
Function  select-direction  takes this and  combines  it  with  the 
input on the  heading line considered  as  a  motive force. It 
selects  the  instantaneous  direction  of  travel by summing  the 
forces  acting  on  the  robot.  (This  simple  technique  computes 
the  tangent to the  minimum energy path  computed by 191.) 

The function  significant-force-p  checks  whether  the  result- 
ing  force  is above some threshold-in this case  it  determines 
whether  the  resulting  motion  would  take  less  than  a second. 
The dispatch  logic  then ignores such  motions. The function 
fcllow-force converts the desired direction  and force magni- 
tude  into motor velocity commallds. 

This particular  module is part  of  the  level 1 control  system 
(as  indicated by the argument “1  ’‘ following avoid,  the name 
of the module),  which  is described in  Section -1V-B. It 
essentially does local  navigation,  making sure obstacles are 
avoided by diverting  a desired heading  away from obstacles.  It 
does not deliver the robot to a desired location-that  is  the  task 
of  level 2 competence. 
B. Communication 

Fig. 4 shows  the  best  way  to  think  about  these finite state 
modules for  the purposes of communications. They have  some 
input lines and some output lines.  An output  line from one 
module  is  connected  to  input  lines  of  one or more other 

’ The exact  semantics are as  follows.  After an event  dispatch is executed all 
input  lines are monitored  for  message  arrivals.  When  the  next  event  dispatch 
is executed it has  access to latches  which  indicate  whether new messages 
arrived  on  each  input  line.  Each  condition is evaluated in turn. If it is true  then 
the  dispatch to the new state  happens.  Each  condition is an and/or  expression 
on  the  input  line  latches.  In  addition,  condition  expressions can include  delay 
terms,  which  become  true  a  specified  amount of time  after  the  beginning of  the 
execution of the  event  dispatch. An event  dispatch  waits until one of its 
condition  expressions is true. 

Inhibitor 

In 

Fig. 4. A module  has  input  and  output  lines.  Input  signals  can be  suppresscd 
and  replaced  with  the  suppressing  signal.  Output  signals  can  be  inhibited. 
A module can also be reset to state NIL. 

modules. One  can think  of  these  lines as  wires, each  with 
sources  and  a  destination. Additionally, outputs  may  be 
inhibited,  and  inputs  may be suppressed. 

An extra wire can terminate (i.e. have its destination) at an 
output site of  a module. If  any  signal travels along this wire it 
inhibits any output  message from the module along that  line 
for some predetermined time. Any messages sent by the 
module to that  output during that time period is lost. 

Similarly, an extra wire can terminate at an input site of a 
module. Its action  is  very similar to that of  inhibition,  but 
.additionally, the  signal  on this wire, besides inhibiting  signals 
along  the  usual path, actually gets fed through as  the input  to 
the module. Thus it suppresses the usual input and provides  a 
replacement. If more than one suppressing wire is present  they 
are essentially OR-ed together.  For both  suppression  and 
inhibition  we write the time constants inside the circle. 

In our specification language we write wires as a source 
(i.e. an  output  line)  followed  by  a number of  destinations (i.e. 
input lines). For instance  the  connection to  the  force input of 
the  Avoid  module  might  be the wire defined as 

(defwire 1 (feelforce  force) (avoid force)). 

This  links the force output  of  the Feelforce module to  the 
input  of  the  Avoid  module  in  the  level one  control system. 

Suppression  and  inhibition can also be described with  a 
small  extension  to the syntax above. Below we  see  the 
suppression  of  the  command  input  of the  Turn module, a  level 
0 module by a  signal from the level 1 module Avoid. 

(defwire 1 (avoid  command)  ((suppress (turn command) 20.0))). 

In  a similar manner a  signal can be connected to the  reset 
input  of  a  module. 

IV. A  ROBOT CONTROL SYSTEM INSTANCE 
We have implemented  a  mobile robot control system to 

achieve  levels 0 and 1 competence as defined above, and have 
started  implementation  of  level 2 bringing it to a stage which 
exercises  the  fundamental  subsumption  idea effectively. We 
need more work on an early vision algorithm to complete level 
2. 
A .  Zeroth Level 

The lowest  level layer of control makes sure that the robot 
does not come into  contact  with other objects. It thus achieves 
level 0 competence (Fig. 5) .  If something approaches the  robot 
it  will  move away. If in the course of moving itself it is about 

Authorized licensed use limited to: Riccardo Cassinis. Downloaded on June 3, 2009 at 07:42 from IEEE Xplore.  Restrictions apply.



BROOKS: A ROBUST LAYERED CONTROL  SYSTEM  FOR A MOBILE  ROBOT 19 

robot I 4 + turn runaway 4 feelforce 

force heading 
forward 3 

sonar 4 -map encoders 

halt - collide 

Fig. 5. Level 0 control system. 

to collide with an object it will halt. Together these two tactics 
are sufficient for the robot to flee from moving obstacles, 
perhaps requiring many motions, without colliding with 
stationary obstacles. The combination of the tactics allows the 
robot to operate with very coarsely calibrated sonars and a 
wide range of repulsive force functions. Theoretically, the 
robot is not invincible of course, and a sufficiently fast-moving 
object or  a very cluttered environment might result, in a 
collision. Over the course of a number of.hours of autonomous 
operation, our physical robot (see Section V-B) has  not 
collided with either a moving or fixed obstacle. The moving 
obstacles have, however, been careful to move slowly. 

The Turn and Forward modules communicate with the 
actual robot. They have extra communication mechanisms, 
allowing them to send and receive commands to and from the 
physical robot directly. The  Turn module receives a heading 
specifying an in-place turn angle followed by a forward 
motion  of a specified magnitude. It commands the robot to 
turn (and  at the same time sends a busy message on  an 
additional output channel described in Fig. 7) and on 
completion passes on the heading to the Forward module  (and 
also reports the shaft encoder readings on another output line 
shown in Fig. 7). The  Turn module then goes into a wait state 
ignoring all incoming messages. The Forward module com- 
mands the robot to move forward but halts the robot if it 
receives a message on its halt input line during the motion. As 
soon as the robot is idle, it sends out the shaft encoder 
readings. The message acts as a reset for the Turn module, 
which is then once again ready to accept a new motion 
command. Notice the any heading commands sent to the Turn 
module during transit are lost. 

The Sonar module takes a vector of sonar readings, filters 
them for invalid readings, and effectively produces a robot 
centered map of obstacles in polar coordinates. 

The Collide module monitors the sonar map and if  it detects 
objects dead ahead, it sends a signal on the halt line to the 
Motor module. The Collide module does not  know or care 
whether the robot is moving. Halt messages sent while the 
robot is stationary are essentially lost. 

The Feelforce module sums the results of considering each 
detected object as a repulsive force, generating a single 
resultant force. 

The Runaway module monitors the ‘force’ produced by the 
sonar detected obstacles and sends commands to the turn 
module if it ever becomes significant. 

Fig. 5 gives a complete description of how the modules are 
connected together. 

B. First Level 
The first level layer of control, when combined with the 

zeroth, imbues the robot with the ability to wander around 
aimlessly without hitting obstacles. This was defined earlier as 
level 1 competence. This control level relies in a  large  degree 
on the zeroth level’s aversion to hitting obstacles. In addition it 
uses a simple heuristic to plan ahead a little in order to avoid 
potential collisions which would need to be handled by the 
zeroth level. 

The Wander module generates a new heading for the robot 
every ten seconds or so. 

The Avoid module, described in more detail in Section 111, 
takes the result of the force computation from the zeroth level 
and combines it with the desired heading to produce a 
modified heading, which usually points in roughly the right 
direction, but is perturbed to avoid any obvious obstacles.  This 
computation implicitly subsumes the computations of the 
Runaway module, in the case that there  is also a heading to 
consider. In fact the output of the Avoid module suppresses the 
output from the Runaway module as it enters the Motor 
module. 

Fig. 6 gives a complete description of how the modules are 
connected together. Note that it is simply Fig. 5 with some 
more modules and wires added. 

C. Second Level 
Level 2 is meant to add an exploratory mode of behavior to 

the robot, using visual observations to select interesting places 
to visit. A vision module finds corridors of free  space. 
Additional modules provide a means of position servoing the 
robot to along the corridor despite the presence of local 
obstacles on its path (as detected with the sonar sensing 
system). The wiring diagram is shown in Fig. 7. Note that it  is 
simply Fig. 6 with some more modules and wires added. 

The Status module monitors the Turn and Forward mod- 
ules. It maintains one status output which sends either hi or  lo 
messages to indicate whether the robot is busy. In addition, at 

Authorized licensed use limited to: Riccardo Cassinis. Downloaded on June 3, 2009 at 07:42 from IEEE Xplore.  Restrictions apply.



20 IEEE JOURNAL OF ROBOTICS  AND  AUTOMATION, VOL. RA-2,  NO. I ,  MARCH 1986 

wander 

heading 

4 f e e l f o o c e  
heading 

heading 

4 halt 
collide - 

Fig. 6 .  Level 0 control  system  augmented with the  level 1 system. 

robot 
I busy 

1 - travel - stereo 

- + i n t e g r a t e - - ,  
candidate 

integral 

init 
A 

__c 

startlook 
look pathplan- 

+whenlook c 
path 4 ’  heading 

I 

1 

heading  avoid 
L heading  encoders 

I 
status 

busy 

mbot 

mbot 4 feelforce 

force  heading - 2 
headlng 

forward - 
sonar -map 4 encoder8 

halt - collide 

u 
Fig. 7. Level 0 and 1 control  systems  augmented  with  the  level 2 system. 

the completion of every turn and roll forward combination it 
sends out a combined set of shaft encoder readings. 

The Whenlook module monitors the busy line from the 
Status module, and whenever the robot has  been sitting idle for 
a few seconds it decides its time to look for a corridor to 
traverse. It inhibits wandering so it can take some pictures and 
process them without wandering away from its current 
location, and resets the Pathplan and Integrate modules. This 
latter action ensures that the robot will  know  how far it has 

moved from its observation point should any Runaway 
impulses perturb it. 

The Look module initiates the vision processing, and waits 
for a candidate freeway. It filters out poor candidates and 
passes  any acceptable one to the Pathplan module. 

The Stereo module is supposed to use stereo TV images [7], 
which are obtained by the robot, to find a corridor of free 
space. At the time of writing final version of this module had 
not  been implemented. Instead, both  in simulation and on the 

Authorized licensed use limited to: Riccardo Cassinis. Downloaded on June 3, 2009 at 07:42 from IEEE Xplore.  Restrictions apply.



BROOKS:  A  ROBUST  LAYERED  CONTROL  SYSTEM  FOR A MOBILE ROBOT 

physical robot, we have replaced it with a sonar-base corridor 
finder. 

The Integrate module accumulates reports of motions from 
the status module and always sends its most recent result out 
on its integral line. It gets restarted by application of a signal to 
its  reset input. 

The Pathplan module takes a goal specification (in terms of 
an angle to turn,  a distance to travel) and attempts to reach that 
goal. To  do this, it sends headings to the Avoid module, which 
may perturb them to avoid local obstacles, and monitors its 
integral input which is an integration of actual motions. The 
messages to the Avoid module suppress random wanderings of 
the robot, so long as the higher level planner remains active. 
When the position of the robot is close to the desired position 
(the robot is unaware of control errors due to wheel slippage 
etc., so this is a dead-reckoning decision) it terminates. 

The current wiring of the second level of control is  shown in 
Fig. 7, which augments the two lower level control systems. 
The zeroth and first layers still play an active roll during 
normal operation of the second layer. 

V. PERFORMANCE 
The control system described here has  been  used exten- 

sively to control both a simulated robot  and an actual physical 
robot wandering around a cluttered laboratory and a machine 
room. 
A. A Simulated Robot 

The simulation tries to simulate all the errors and uncertain- 
ties that exist in the world of the real robot. When  commanded 
to turn through angle a and travel distance d the simulated 
robot actually turns through angle a + 601 and travels distance 
d + 6d. Its sonars can bounce off  walls  multiple times, and 
even when they do return they have a noise component in the 
readings that model thermal and humidity effects. We  feel  it  is 
important to have such a realistic simulation. Anything less 
leads to incorrect control algorithms. 

The simulator runs off a clock and runs at  the same rate as 
would the actual robot. It actually runs on the same processor 
that is simulating the subsumption architecture. Together they 
are nevertheless able to perform a real-time simulation of the 
robot and  its control and also drive graphics displays of robot 
state and module performance monitors. Fig. 8 shows the 
robot (which itself is not drawn) receiving sonar reflections at 
some  of its 12 sensors. Other beams did  not return within the 
time allocated for data collection. The beams are being 
reflected by various walls. There is a small bar in front of the 
robot perpendicular to the direction the robot is pointing. 

Fig. 9 shows an example world  in two dimensional 
projection. The simulated robot with a first level control 
system connected was allowed to wander from an initial 
position. The squiggly line traces out its path. Note that it was 
wandering aimlessly and that it hit no obstacles. 

Fig. 10 shows two examples of the same scene and the 
motion of the robot with the second level control system 
connected. In these cases the Stereo module was supplanted 
with a situation-specific module, which gave out two precise 

A 

21 

Fig. 8. Simulated  robot receives 12 sonar  readings.  Some  sonar  beams 
glance off walls  and do  not  return  within  a  certain  time. 

Fig. 9. 

I 

Under levels 0 and 1 control the robot  wanders  around  aimlessly. It 
does not hit  obstacles. 

corridor descriptions. While achieving the goals of following 
these corridors the lower level wandering behavior was 
suppressed. However the obstacle avoiding behavior of the 
lower levels continued to function-in both cases the robot 
avoided the square obstacle. The goals were not reached 
exactly. The simulator models a uniformly distributed error of 
+ 5  percent in  both turn and forward motion. As soon as the 
goals had been achieved satisfactorily the robot reverted to its 
wandering behavior. 
B. A Physical Robot 

We have constructed a mobile robot shown in Fig. 11. It is 
about 17 inches in diameter and about 30 inches from the 
ground to the top platform. Most of the processing occurs 
offboard on a Lisp machine. 

Authorized licensed use limited to: Riccardo Cassinis. Downloaded on June 3, 2009 at 07:42 from IEEE Xplore.  Restrictions apply.



22 IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. RA-2, NO. 1, MARCH 1986 

Fig. 10. (a) With b e l 2  control  the  robot  tries to achieve  commanded  goals. 
The nominal  goals are  the  two  straight lines. (b) After  reaching  the  second 
goal,  since  there are  no new goals  forthcoming, the robot  reverts to aimless 

level 1 behavior. 

The  drive mechanism was purchased from Real WorId 
Interface of Sudbury, MA. Three parallel drive wheels are 
steered together. The two motors are servoed by a single 
microprocessor. The robot body is attached to the steering 
mechanism and always points in the same direction as  the 
wheels. It can turn in place (actually it inscribes a circle about 
1 cm in diameter). 

Currently installed sensors are  a ring of twelve Polaroid 
sonar time-of-flight range sensors and  two  Sony CCD cam- 
eras.  The sonars are arranged symmetrically around the 
rotating body  of the robot. The cameras are on a tilt head  (pan 
is provided by the steering motors). We plan to install feelers 
that can sense objects at ground level about six inches from the 
base extremities. 

Fig. 11. The  M.I.T. AI Lab mobile  robot. 

A central cardcage contains the main on-board processor, 
an Intel 803 I .  tt communicates with off-board processors via a 
12 Kbit/s duplex radio link. The radios are modified Motorola 
digital voice encryption units. Error correction cuts the 
effective bit rate to less than  half the nominal rating. The 8031 
passes commands down to the motor controller processor and 
returns encoder readings. It controls the sonars and the tilt 
head, and it switches the cameras through a single channel 
video transmitter mounted on top of the robot. The latter 
transmits a standard TV signal to a Lisp machine equipped 
with a demodulator and frame  grabber. 

The robot has spent a few hours wandering around a 
laboratory and a machine room. 

Under level 0 control, the robot finds a large empty space 
and then sits there contented until a moving obstacle ap- 
proaches. Two people together can successfully herd the robot 
just about anywhere-through doors or between rows of disk 
drives, for instance. 

When level 1 control is added the robot is no longer content 
to sit in  an open space. After a few seconds it heads off in a 
random direction. Our uncalibrated sonars and obstacle 
repulsion functions make it overshoot a  little to locations 
where the Runaway module reacts. It would  be interesting to 
make this the basis of adaption of ceriain parameters. 

Under Level 2 a sonar-based corridor finder usually finds the 
most distant point in the room.  The robot heads of in the 
direction. People walking  in front of the robot cause it to 
detour, but the robot still gets to the initially desired goal, even 
when  it involves squeezing between closely spaced obstacles. 
If the sonars are in error and a goal is selected beyond a wall, 
the robot usually ends up in a position where  the attractive 
force of the goal is  within a threshold used by Avoid of the 
repulsive forces of the wall. At this point Avoid does not issue 
any heading, as it would  be for some trivial motion of the 
robot. The robot sits still defeated by the obstacle. The 
Whenlook module, however, notices that the robot is  idle  and 
initiates a new scan for another corridor of free space to 
follow. 

Authorized licensed use limited to: Riccardo Cassinis. Downloaded on June 3, 2009 at 07:42 from IEEE Xplore.  Restrictions apply.



BROOKS: A ROBUST LAYERED CONTROL SYSTEM FOR A MOBILE ROBOT 23 

C. Implementation Issues 
While we have been able to simulate sufficient processors 

on a single Lisp machine up until now, that capability will 
soon  pass as we bring on line  our vision work (the algorithms 
have been debugged as traditional serial algorithms, but we 
plan on re-implementing them within the subsumption archi- 
tecture). Building the architecture in custom chips is a long- 
term goal. 

One of the motivations for developing the layered control 
system was extensibility of processing power. The fact that  it 
is decomposed into asynchronous processors with low-band- 
width communication and  no shared memory  should certainly 
assist in achieving that goal. New processors can simply be 
added to the network by connecting their inputs and outputs at 
appropriate places-there are no bandwidth or synchronization 
considerations in such connections. 

The finite state processors need  not  be large. Sixteen states 
is more than sufficient for all modules we have written so far. 
(Actually, eight states are sufficient under the model  of the 
processors we have presented here and  used in OUT simula- 
tions. However we have refined the design somewhat towards 
gate-level implementation, and there we use simpler more 
numerous states.) Many such processors could easily be 
packed on a single chip. 

The Lisp programs that are called by the finite state 
machines are all rather simple. We believe it is possible to 
implement each of them with a simple network of compara- 
tors, selectors, polar coordinate vector adders, and  monotonic 
function generators. The silicon area overhead for each 
module would probably not be larger than that required for the 
finite state machine itself. 

VI. CONCLUSION 
The key ideas in this paper are the following. 

The mobile robot control problem can be decomposed in 
terms of behaviors rather than in terms of functional 
modules. 
It provides a way to incrementally build  and test a 
complex mobile robot control system. 
Useful parallel computation can. be performed on a low 
bandwidth loosely coupled network of asynchronous 
simple processors. The topology of that network is 
relatively fixed. 
There is no need for a central control module of a mobile 
robot. The control system can be  viewed as a system of 
agents each busy with their own solipsist world. 

Besides leading to a different implementation strategy it is also 
interesting to note the way the decomposition affected the 
capabilities of the robot control system we have built. In 
particular, our control system deals with moving objects in the 
environment at the very lowest level, and  it  has a specific 
module (Runaway) for that purpose. Traditionally mobile 
robot projects have delayed handling moving objects in  the 
environment beyond the scientific life of the project. 

Note: A drawback of the presentation in this paper was 

merging the algorithms for control of the robot with the 
implementation medium. We felt this was necessary to 
convince the reader of the utility of both. It is unlikely that the 
subsumption architecture would appear to be useful without a 
clear demonstration of  how a respectable and useful algorithm 
can run  on it. Mixing the two descriptions as we have done 
demonstrates the proposition. 

ACKNOWLEDGMENT 

Tomas Lozano-Pkrez, Eric Grimson, Jon Connell, and 
Anita Flynn have all provided helpful comments on earlier 
drafts of this paper. 

REFERENCES 
R. A.  Brooks,  “Aspects of mobile  robot  visual map  making,” in 
Robotics Research 2, Hanafusa  and Inoue, Eds. Cambridge, MA: 
M.I.T.,  1984, pp.  369-375. 

Conf. Robotics and Automat., pp.  824-829. 
James L. Crowley,  “Navigation  for  an  intelligent  mobile  robot,” 
IEEE J. Robotics Automat., vol.  RA-1,  no. I ,  Mar.  1985,  pp. 31- 
41. 
A. Elfes  and S. N. Talukdar, “A distributed  control  system  for  the 
CMU  rover,” in Proc. ZJCAI, 1983,  pp.  830-833. 
A. Flynn,  “Redundant  sensors for  mobile  robot  navigation,” M.S. 
Thesis,  Department of Electrical  Engineering  and  Computer  Science, 
M.I.T.,  Cambridge,  MA, July  1985. 
G. Giralt, R. Chatila,  and M.  Vaisset,  “An integrated  navigation  and 
motion  control  system  for  autonomous  multisensory  mobile  robots,”  in 
Robotics Research 1, Brady  and  Paul, Eds.  Cambridge,  MA: M.I.T. 

W. L. Grimson,  “Computational  experiments  with  a  feature  based 
stereo  algorithm,” ZEEE Trans. Patt. Anal. Mach. Intell., vol. 
PAMI-7,  pp.  17-34,  Jan.  ‘1985. 
Y. Kanayama,  “Concurrent  programming  of  intelligent  robots,”  in 
Proc. ZJCAI, 1983,  pp.  834-838. 
0. Khatib,  “Dynamic  control of manipulators  in  operational  space,” 
Sixth IFTQMM Cong. Theory of Machines and Mechanisms, Dec. 
1983. 
M. L. Kreithen,  “Orientational  strategies  in  birds:  a  tribute  to W. T. 
Keeton,”  in Behavioral Energetics: The Cost of Survival in 
Vertebrates. Columbus,  OH:  Ohio  State  University,  1983,  pp.  3-28. 
H.  P.  Moravec,  “The  stanford  cart  and  the CMU  rover,” Proc. ZEEE, 

N. J. Nilsson,  “Shakey  the  robot,” SRI AI  Center,  tech. note  323, 
Apr.  1984. 
H. A.  Simon, Sciences of the Artificial. Cambridge,  MA:  M.I.T., 
1969. 
S .  Tsuji,  “Monitoring of a  building  environment by a  mobile  robot,” in 
Robotics Research 2, Hanafusa  and Inoue,  Eds.,  Cambridge,  MA: 
M.I.T.,  1985, pp.  349-356. 

__- , “Visual  map  making  for  a  mobile  robot,”  in Proc. 1985 ZEEE 

1983,  191-214. 

VOI.  71,  pp.  872-884,  July  1983. 

Authorized licensed use limited to: Riccardo Cassinis. Downloaded on June 3, 2009 at 07:42 from IEEE Xplore.  Restrictions apply.


